* new memory model

- for relaxed memory

+ and concurrency

- not my area of expertise

*any incorrectness is my own
- foundational -> important

- approachable

A Promising Semantics
for Relaxed-Memory
Concurrency by Kang et al

@p\,\,\de Nick Fitzgerald
Papers We Love PDX
October 26th, 2016

@ﬁtzgen

Memory model?

Formal semantics for loads and
stores

formal semantics for reading from and writing to memory
- what order?
- what values?

- “relaxed” = normal loads and stores, no atomics/synchronization
* intuition for uniprocessor memory model:

- map from addresses to values
- read returns current value associated with address
- write immediately updates address’s associated value

Difficulties

* Multiprocessors

multiprocessors and concurrency

- which operation happened first?

- can we even define an ordering on memory operations?
- SLIDE — Memory is actually hierarchical w/ multiple layers of caches
- some shared between all cores
- other layers distinct between cores
- SLIDE — We have those cache layers because memory is slow
- particularly writes b/c they invalidate other cores’ caches
- write buffers batch writes so that they don’t need to happen as often
- SLIDE — Optimizing compilers want to minimize + reorder loads and stores
- move them out of loops
- easy to reason about only one thread, but not so w/ concurrency
- Both Intel and AMD repeatedly published incorrect descriptions of their own semantics
- x86 TSO paper observed behavior Intel/AMD said was impossible
- and then went further and provided semantics that *did* accurately describe behavior
- but that Power and ARM have even weaker memory behavior, using TSO on them would require tons of expensive fences
+ 2 notable programming language level memory models:
- 1. java: first language to provide a formal mem model

- both too weak to reason about and so strong it prevented many basic compiler optimizations
- and this is Guy Steele — what chance do us mere mortals have?

Difficulties

* Multiprocessors

e Caches

multiprocessors and concurrency

- which operation happened first?

- can we even define an ordering on memory operations?
- SLIDE — Memory is actually hierarchical w/ multiple layers of caches
- some shared between all cores
- other layers distinct between cores
- SLIDE — We have those cache layers because memory is slow
- particularly writes b/c they invalidate other cores’ caches
- write buffers batch writes so that they don’t need to happen as often
- SLIDE — Optimizing compilers want to minimize + reorder loads and stores
- move them out of loops
- easy to reason about only one thread, but not so w/ concurrency
- Both Intel and AMD repeatedly published incorrect descriptions of their own semantics
- x86 TSO paper observed behavior Intel/AMD said was impossible
- and then went further and provided semantics that *did* accurately describe behavior
- but that Power and ARM have even weaker memory behavior, using TSO on them would require tons of expensive fences
+ 2 notable programming language level memory models:
- 1. java: first language to provide a formal mem model

- both too weak to reason about and so strong it prevented many basic compiler optimizations
- and this is Guy Steele — what chance do us mere mortals have?

Difficulties

* Multiprocessors
e Caches

e Buffers

multiprocessors and concurrency

- which operation happened first?

- can we even define an ordering on memory operations?
- SLIDE — Memory is actually hierarchical w/ multiple layers of caches
- some shared between all cores
- other layers distinct between cores
- SLIDE — We have those cache layers because memory is slow
- particularly writes b/c they invalidate other cores’ caches
- write buffers batch writes so that they don’t need to happen as often
- SLIDE — Optimizing compilers want to minimize + reorder loads and stores
- move them out of loops
- easy to reason about only one thread, but not so w/ concurrency
- Both Intel and AMD repeatedly published incorrect descriptions of their own semantics
- x86 TSO paper observed behavior Intel/AMD said was impossible
- and then went further and provided semantics that *did* accurately describe behavior
- but that Power and ARM have even weaker memory behavior, using TSO on them would require tons of expensive fences
+ 2 notable programming language level memory models:
- 1. java: first language to provide a formal mem model

- both too weak to reason about and so strong it prevented many basic compiler optimizations
- and this is Guy Steele — what chance do us mere mortals have?

Difficulties

* Multiprocessors
e Caches
» Buffers

e Compiler optimizations

multiprocessors and concurrency

- which operation happened first?

- can we even define an ordering on memory operations?
- SLIDE — Memory is actually hierarchical w/ multiple layers of caches
- some shared between all cores
- other layers distinct between cores
- SLIDE — We have those cache layers because memory is slow
- particularly writes b/c they invalidate other cores’ caches
- write buffers batch writes so that they don’t need to happen as often
- SLIDE — Optimizing compilers want to minimize + reorder loads and stores
- move them out of loops
- easy to reason about only one thread, but not so w/ concurrency
- Both Intel and AMD repeatedly published incorrect descriptions of their own semantics
- x86 TSO paper observed behavior Intel/AMD said was impossible
- and then went further and provided semantics that *did* accurately describe behavior
- but that Power and ARM have even weaker memory behavior, using TSO on them would require tons of expensive fences
+ 2 notable programming language level memory models:
- 1. java: first language to provide a formal mem model

- both too weak to reason about and so strong it prevented many basic compiler optimizations
- and this is Guy Steele — what chance do us mere mortals have?

“Out of Thin Air”

Reads

The C++ memory model is fundamentally broken in usual way
- undefined behavior if not DRF
- out of thin air reads
- read a value that never had a corresponding previous write
- circular argument that if we read this value now
- it could then be written in the future
- and then travel back to the past and become its own grandfather

“Without a semantics, programmers
currently have to program against
their folklore understanding of what
the Java and C/C++ implementations
provide, and research on verification,
compilation, or testing for such
languages is on shaky foundations.”

—Batty et al in The Problem of Programming Language Concurrency
Semantics

we have been writing concurrent programs
+ in a glass house of cards
* built on foundation of sand
- where “writing concurrent programs” means “throwing rocks”
-+ and all the while we’re waiting for the Next Big Earthquake
-+ can’t avoid this by using higher level languages/paradigms
*+ guess what they’re implemented in?

Goals

 Describe actual hardware behavior

often conflicting

* has to describe behavior of hardware that already exists

- ships have sailed

- if you don’t, then it won’t get used, period

- at the same time, can’t over specify and constrain future hardware design
- SLIDE — if too strong, compilers can’t reorder/elide

- SLIDE — if too weak, can’t reason about behavior/correctness programs

- easiest thing to reason about is SC, not practical

- SLIDE — absolutely need to avoid UB

+ nondeterministic behavior ok

Goals

 Describe actual hardware behavior

* Weak enough to enable compiler
optimizations

often conflicting

* has to describe behavior of hardware that already exists

- ships have sailed

- if you don’t, then it won’t get used, period

- at the same time, can’t over specify and constrain future hardware design
- SLIDE — if too strong, compilers can’t reorder/elide

- SLIDE — if too weak, can’t reason about behavior/correctness programs

- easiest thing to reason about is SC, not practical

- SLIDE — absolutely need to avoid UB

+ nondeterministic behavior ok

Goals

 Describe actual hardware behavior

* Weak enough to enable compiler
optimizations

e Strong enough to reason on top of

often conflicting

* has to describe behavior of hardware that already exists

- ships have sailed

- if you don’t, then it won’t get used, period

- at the same time, can’t over specify and constrain future hardware design
- SLIDE — if too strong, compilers can’t reorder/elide

- SLIDE — if too weak, can’t reason about behavior/correctness programs

- easiest thing to reason about is SC, not practical

- SLIDE — absolutely need to avoid UB

+ nondeterministic behavior ok

Goals

 Describe actual hardware behavior

* Weak enough to enable compiler
optimizations

e Strong enough to reason on top of

No undefined behavior!

often conflicting

* has to describe behavior of hardware that already exists

- ships have sailed
- if you don’t, then it won’t get used, period

- at the same time, can’t over specify and constrain future hardware design

- SLIDE — if too strong, compilers can’t reorder/elide

- SLIDE — if too weak, can’t reason about behavior/correctness programs
- easiest thing to reason about is SC, not practical

- SLIDE — absolutely need to avoid UB

+ nondeterministic behavior ok

The Promising Semantics

* (Mostly) backwards compatible with the
C++11 memory model

backwards compat = maybe we can get C++ to adopt this model?

+ SLIDE — no OOTA = sanity

- SLIDE — allowing some eliding + reordering permits normal nondeterminism of concurrency + compiler optimization
- SLIDE — if a program is single threaded, or uses atomics/locks properly, then it is completely unaffected

- SLIDE — no undefined behavior

+ yes nondeterminism, but all permissible executions are well defined

The Promising Semantics

* (Mostly) backwards compatible with the
C++11 memory model

e Avoids out-of-thin-air

backwards compat = maybe we can get C++ to adopt this model?

+ SLIDE — no OOTA = sanity

- SLIDE — allowing some eliding + reordering permits normal nondeterminism of concurrency + compiler optimization
- SLIDE — if a program is single threaded, or uses atomics/locks properly, then it is completely unaffected

- SLIDE — no undefined behavior

+ yes nondeterminism, but all permissible executions are well defined

The Promising Semantics

* (Mostly) backwards compatible with the
C++11 memory model

e Avoids out-of-thin-air

* Permits sane eliding and reordering

backwards compat = maybe we can get C++ to adopt this model?

+ SLIDE — no OOTA = sanity

- SLIDE — allowing some eliding + reordering permits normal nondeterminism of concurrency + compiler optimization
- SLIDE — if a program is single threaded, or uses atomics/locks properly, then it is completely unaffected

- SLIDE — no undefined behavior

+ yes nondeterminism, but all permissible executions are well defined

The Promising Semantics

(Mostly) backwards compatible with the
C++11 memory model

Avoids out-of-thin-air

Permits sane eliding and reordering

Not infectious for data-race free programs

backwards compat = maybe we can get C++ to adopt this model?

+ SLIDE — no OOTA = sanity

- SLIDE — allowing some eliding + reordering permits normal nondeterminism of concurrency + compiler optimization
- SLIDE — if a program is single threaded, or uses atomics/locks properly, then it is completely unaffected

- SLIDE — no undefined behavior

+ yes nondeterminism, but all permissible executions are well defined

The Promising Semantics

(Mostly) backwards compatible with the
C++11 memory model

Avoids out-of-thin-air

Permits sane eliding and reordering

Not infectious for data-race free programs

No undefined behavior

backwards compat = maybe we can get C++ to adopt this model?

+ SLIDE — no OOTA = sanity

- SLIDE — allowing some eliding + reordering permits normal nondeterminism of concurrency + compiler optimization
- SLIDE — if a program is single threaded, or uses atomics/locks properly, then it is completely unaffected

- SLIDE — no undefined behavior

+ yes nondeterminism, but all permissible executions are well defined

The Promising Semantics

Comprehensible!!

what | liked most about this paper, and what made me love it, is how easy it is to understand

- especially in comparison to other memory semantics papers

- operational semantics vs happens-before partial ordering

-xample (SB)

a =y // 0 =X // 0

first, let’s go through examples from the paper
+ whether we want to permit it or not
- semantics will have to formally describe why it is permissible or not
- 2 threads, separated by ||
+ SLIDE — all memory and all registers are initially 0
- SLIDE — a, b, c are registers
- SLIDE — X, vy, z are all distinct memory locations
+ x:=1is writing to memory
- a:=Yy is reading from memory
- SLIDE — // 0 means we observed 0 for a given read
- so how do we observe that both x and y are 0 here??

-xample (SB)

X =1 y =1
a:=y// 0 b :=x// 0

» Everything is initially @

first, let’s go through examples from the paper
+ whether we want to permit it or not
- semantics will have to formally describe why it is permissible or not
- 2 threads, separated by ||
+ SLIDE — all memory and all registers are initially 0
- SLIDE — a, b, c are registers
- SLIDE — X, vy, z are all distinct memory locations
+ x:=1is writing to memory
- a:=Yy is reading from memory
- SLIDE — // 0 means we observed 0 for a given read
- so how do we observe that both x and y are 0 here??

X =1
a =y // 0

» Everything is initially @
 a, b, careregisters

-xample (S

y
b

x // 0

first, let’s go through examples from the paper
+ whether we want to permit it or not
- semantics will have to formally describe why it is permissible or not
- 2 threads, separated by ||
+ SLIDE — all memory and all registers are initially 0
- SLIDE — a, b, c are registers
- SLIDE — X, vy, z are all distinct memory locations
+ x:=1is writing to memory
- a:=Yy is reading from memory
- SLIDE — // 0 means we observed 0 for a given read
- so how do we observe that both x and y are 0 here??

-xample (SB)

X =1 y =1
a:=y// 0 b :=x// 0

» Everything is initially @
* a, b, careregisters
* X, Y, zare distinct memory locations

first, let’s go through examples from the paper
+ whether we want to permit it or not
- semantics will have to formally describe why it is permissible or not
- 2 threads, separated by ||
+ SLIDE — all memory and all registers are initially 0
- SLIDE — a, b, c are registers
- SLIDE — X, vy, z are all distinct memory locations
+ x:=1is writing to memory
- a:=Yy is reading from memory
- SLIDE — // 0 means we observed 0 for a given read
- so how do we observe that both x and y are 0 here??

-xample (SB)

X =1 y =1
a:=y// 0 b :=x// 0

Everything is initially @

a, b, careregisters

X, Y, zare distinct memory locations
// @ means that we observed the value 0

first, let’s go through examples from the paper
+ whether we want to permit it or not
- semantics will have to formally describe why it is permissible or not
- 2 threads, separated by ||
+ SLIDE — all memory and all registers are initially 0
- SLIDE — a, b, c are registers
- SLIDE — X, vy, z are all distinct memory locations
+ x:=1is writing to memory
- a:=Yy is reading from memory
- SLIDE — // 0 means we observed 0 for a given read
- so how do we observe that both x and y are 0 here??

-xample (SB)

a:i=y//0 b :=x // 0

no syntactic dependency between 'x:=1 and'a:=y

- therefore, safe to buffer the write to happen later

- reorders each threads read and write operations so they execute like the above
* both threads do their reads

- and then their writes

+ want to support

- x86 does

- yes

Q

—xample (LB)

x // 1 X =

- should we permit the first thread to observe 1 for its read of x?

—xample (L

=x // 1

ARM

no dependency between first thread’s write to y and read of x
* load buffering allows delaying the read so that the write to y happens first
* to observe a read where x is 1:
* first thread writes y=1
* second thread reads y=1 and writes x=y=1
* first thread reads x=1
* crazy as this behavior may seem, both Power and ARM do this!

* instead of writingy = 1, writingy = a
* Permit first thread to observe x = 1?

* nope!

Q

—xample (L

x // 17 X

5d)

Q
.I.
X
N
N

<
.| .
Q

* first, syntactic dependency between first thread’s read and write
* can’t reorder them

* second, where did 1 come from?
* out of thin air!

* this is actually permitted by the C++11 memory model
* but we should hold ourselves to higher standards!

—xample (L

x // 17
a+1-a

3fd)

Same thing but replace 'y :=a with'y:=a+1-a

* Now should we permit observing 1 when reading x?

* yes!

—xample (L

X // 17

Q
I

3fd)

* We should permit an optimizing compiler to reduce 'a+1-a to ' 1

-xample (L

y =1
<Za =x // 17

Load
COMFLL@;\”
OPRmamﬁomsE

3d)

b“‘ﬁﬁrémg /

* and once we’ve done that, there is no more syntactic dependency between the read and write
* we can do the same load buffering induced reordering as example (LB)

¥
Q

—xample (LBfd)

1
x // 1!

X
Il
<

LOQc(| .
COMFLLQT b“ﬁ@?‘mgf

Opﬁm&aaﬁoms! Yes

* To observe x=1:

* first thread writes y=1
* second thread reads y=1, then writes x=y=1
* first thread reads x=1

What is memory?

traditionally think of map from address to value

+ not conducive to formalization
- SLIDE — set of all writes ever occurred in program
* location: x ory or z

- value: 1 or whatever
- time?

- rational number

- any number representable by p / q where p,q are integers

+ infinite number of rationals

- and infinite number of rationals between two distinct rationals == “dense
+ more on this later...

- SLIDE

- 'x:=1 translatesto{x:1@t>
+ initially contains zero messages for all memory at timestamp 0

What is memory?

{ location : value @ time »

traditionally think of map from address to value

+ not conducive to formalization
- SLIDE — set of all writes ever occurred in program
* location: x ory or z

- value: 1 or whatever
- time?

- rational number

- any number representable by p / q where p,q are integers

+ infinite number of rationals

- and infinite number of rationals between two distinct rationals == “dense
+ more on this later...

- SLIDE

- 'x:=1 translatesto{x:1@t>
+ initially contains zero messages for all memory at timestamp 0

What is memory?

{ location : value @ time »

X 1=] wepp (X:'1@t)

traditionally think of map from address to value

+ not conducive to formalization
- SLIDE — set of all writes ever occurred in program
* location: x ory or z

- value: 1 or whatever
- time?

- rational number

- any number representable by p / q where p,q are integers

+ infinite number of rationals

-+ and infinite number of rationals between two distinct rationals == “dense”
+ more on this later...

- SLIDE

- 'x:=1 translatesto{x:1@t>
+ initially contains zero messages for all memory at timestamp 0

e Each thread has a local
address = timestamp map

e |tis updated by reads and
writes

Thread local maps from memory locations => largest timestamp observed for location

* map updated by thread’s reads/writes

*+ reads must be satisfied by a write message w/ timestamp >= thread’s view of address

+ writes allocate new timestamp > thread’s view of address, add write message to global memory set

write(T, x, v):

insert < x

let t = new unique timestamp > T.view[Xx]

T.view[x] = t

v @ t > into the memory set

not going to go into the operational semantics, use pseudocode instead

+ T =thread

+ X = memory location

* v = value being written

- T.view is thread-local map

- T.view[x] is thread’s most recent view of memory location x

write(T, x, v):

let t = new unique timestamp > T.view[Xx]

T.view[x] =
insert < x :

t

v @ t > into the memory set

write(T, x, v):

let t = new unique timestamp > T.view[Xx]

T.view[x] =
insert < x :

t

v @ t > into the memory set

write(T, x, v):

insert < x

let t = new unique timestamp > T.view[Xx]

T.view[x] = t

v @ t > into the memory set

use of timestamps provides “coherence”
- total order on writes to particular location

again:
+ T =thread
+ X = memory location
- T.view is thread-local map

read(T, x):
let t = T.view[x]

let possibles = empty set

for each < x'
1f x' == x and t'
insert < x'

let < _ : v@+t')=

nondeterministically choose one from possibles

T.view[x] = t'
return v

v @t

> 1n memory:
>= t:

: v @+t') into possibles

read(T, x):

let t = T.view[Xx]
let possibles = empty set
for each < x' : v @ t' > in memory:
1f x' == x and t' >= t:
insert < x' : v @ t' > into possibles
let < _ :v@t')=

nondeterministically choose one from possibles

T.view[x] = t'
return v

get timestamp of current thread’s view of x

read(T, x):

T.view[x] = t'
return v

let t = T.view[Xx]
let possibles = empty set
for each (x' : v @ t' > in memory:
1f x' == x and t' >= t:
insert < x' : v @ t' > into possibles
let<_ :ve@et')s=

nondeterministically choose one from possibles

write messages that can satisfy this read must have time >= that timestamp

- this is NOT the “latest” write to x

+ b/c there is no shared understanding between thread of “latest” write

read(T, x):

T.view[x] = t'
return v

let t = T.view[x]
let possibles = empty set
for each < x' : v @ t' > in memory:
1f x' == x and t' >= t:
insert < x' : v @ t' > into possibles
let < _ : v@t')=

nondeterministically choose one from possibles

have a set of writes that could possibly satisfy this read
+ choose one nondeterministically

read(T, x):
let t = T.view[x]
let
for each < x'
insert < x'
let < _ : v@+t')=
T.view[x] = t'
return v

1f x' == x and t'

possibles = empty set
v@t' > in memory:

>= t:
v @ t' > into possibles

nondeterministically choose one from possibles

update thread’s view to account for observing this new write message

- return the write message’s value to satisfy read

Memory To.view T1.view

revisit store buffering example
- the paper moves fast, lets move slow
- like a stepping debugger

- arrow is program counter

+ points to the next instruction to execute

- list of all messages in memory set
- show each thread’s view of memory

Memory

-xample (SB)

(x:0@0>
(y:0@0>

To.view

I I
X B

T1.view

X @O0
y@o

X@O0
y @O0

remember:
- observed 0 in load of 'y into "a
- observed 0 in load of "X into b’
+ we want our semantics to permit this
- without loss of generality
- let’s say first thread does its write first
- SLIDE — we get new write message in memory
- SLIDE — first thread’s view is updated
- SLIDE — advance first thread’s program counter

- then the second thread does its write

- SLIDE — we get a new write message in memory

- SLIDE — second thread’s view is updated

- SLIDE — advance second thread’s pc

+ now either read can happen next

- first thread’s read of 'y’

- its view of 'y still at timestamp 0

- can select either write message to satisfy read

- choose @0 message to see our desired election

- second thread is similar

Memory

-xample (SB)

(x:0@0>
(y:0@0>
(x:1@1)

To.view

I I
X B

T1.view

X @O0
y@o

X@O0
y @O0

remember:
- observed 0 in load of 'y into "a
- observed 0 in load of "X into b’
+ we want our semantics to permit this
- without loss of generality
- let’s say first thread does its write first
- SLIDE — we get new write message in memory
- SLIDE — first thread’s view is updated
- SLIDE — advance first thread’s program counter

- then the second thread does its write

- SLIDE — we get a new write message in memory

- SLIDE — second thread’s view is updated

- SLIDE — advance second thread’s pc

+ now either read can happen next

- first thread’s read of 'y’

- its view of 'y still at timestamp 0

- can select either write message to satisfy read

- choose @0 message to see our desired election

- second thread is similar

Memory

(x:0@0>
(y:0@0>
(x:1@1)

I I
X B

T1.view

X@O0
y @O0

remember:
- observed 0 in load of 'y into "a
- observed 0 in load of "X into b’
+ we want our semantics to permit this
- without loss of generality
- let’s say first thread does its write first
- SLIDE — we get new write message in memory
- SLIDE — first thread’s view is updated
- SLIDE — advance first thread’s program counter

- then the second thread does its write

- SLIDE — we get a new write message in memory

- SLIDE — second thread’s view is updated

- SLIDE — advance second thread’s pc

+ now either read can happen next

- first thread’s read of 'y’

- its view of 'y still at timestamp 0

- can select either write message to satisfy read

- choose @0 message to see our desired election

- second thread is similar

Memory

(x:0@0>
(y:0@0>
(x:1@1)

I I
X B

T1.view

X@O0
y @O0

remember:
- observed 0 in load of 'y into "a
- observed 0 in load of "X into b’
+ we want our semantics to permit this
- without loss of generality
- let’s say first thread does its write first
- SLIDE — we get new write message in memory
- SLIDE — first thread’s view is updated
- SLIDE — advance first thread’s program counter

- then the second thread does its write

- SLIDE — we get a new write message in memory

- SLIDE — second thread’s view is updated

- SLIDE — advance second thread’s pc

+ now either read can happen next

- first thread’s read of 'y’

- its view of 'y still at timestamp 0

- can select either write message to satisfy read

- choose @0 message to see our desired election

- second thread is similar

I I
X B

T1.view

X@O0
y @O0

remember:
- observed 0 in load of 'y into "a
- observed 0 in load of "X into b’
+ we want our semantics to permit this
- without loss of generality
- let’s say first thread does its write first
- SLIDE — we get new write message in memory
- SLIDE — first thread’s view is updated
- SLIDE — advance first thread’s program counter

- then the second thread does its write

- SLIDE — we get a new write message in memory
- SLIDE — second thread’s view is updated
- SLIDE — advance second thread’s pc

+ now either read can happen next

- first thread’s read of 'y’

- its view of 'y still at timestamp 0

- can select either write message to satisfy read

- choose @0 message to see our desired election

- second thread is similar

I I
X B

remember:
- observed 0 in load of 'y into "a
- observed 0 in load of "X into b’
+ we want our semantics to permit this
- without loss of generality
- let’s say first thread does its write first
- SLIDE — we get new write message in memory
- SLIDE — first thread’s view is updated
- SLIDE — advance first thread’s program counter

- then the second thread does its write

- SLIDE — we get a new write message in memory
- SLIDE — second thread’s view is updated
- SLIDE — advance second thread’s pc

+ now either read can happen next

- first thread’s read of 'y’

- its view of 'y still at timestamp 0

- can select either write message to satisfy read

- choose @0 message to see our desired election

- second thread is similar

I I
X B

remember:
- observed 0 in load of 'y into "a
- observed 0 in load of "X into b’
+ we want our semantics to permit this
- without loss of generality
- let’s say first thread does its write first
- SLIDE — we get new write message in memory
- SLIDE — first thread’s view is updated
- SLIDE — advance first thread’s program counter

- then the second thread does its write

- SLIDE — we get a new write message in memory
- SLIDE — second thread’s view is updated
- SLIDE — advance second thread’s pc

+ now either read can happen next

- first thread’s read of 'y’

- its view of 'y still at timestamp 0

- can select either write message to satisfy read

- choose @0 message to see our desired election

- second thread is similar

v
v

Memory To.view

T1.view

(x:0@0>

y:0@0> x@0
y@o

X@O0
y @O0

revisit load buffering example
- want to observe 1" when loading "X
- b/c this is actual behavior of power & arm

- What if we do the read of 'x first?

- only message that can satisfy read has value 0
- won’t work

- What if we do the second thread’s read+write first?

- SLIDE — add new write message to memory & update second thread’s view
- SLIDE — advance pc

+ now two messages can satisfy first thread’s read

- but both are 'value = 0

- SLIDE — our semantics can’t describe this yet, need to extend them

v
v

Memory To.view

(x:0@0>
(y:0@0> x@0
(x:0@1) y@Oo

revisit load buffering example
- want to observe 1" when loading "X
- b/c this is actual behavior of power & arm

- What if we do the read of 'x first?

- only message that can satisfy read has value 0
- won’t work

- What if we do the second thread’s read+write first?

- SLIDE — add new write message to memory & update second thread’s view
- SLIDE — advance pc

+ now two messages can satisfy first thread’s read

- but both are 'value = 0

- SLIDE — our semantics can’t describe this yet, need to extend them

+

Memory To.view

(x:0@0>
(y:0@0> x@0
(x:0@1) y@Oo

revisit load buffering example
- want to observe 1" when loading "X
- b/c this is actual behavior of power & arm

- What if we do the read of 'x first?

- only message that can satisfy read has value 0
- won’t work

- What if we do the second thread’s read+write first?

- SLIDE — add new write message to memory & update second thread’s view
- SLIDE — advance pc

+ now two messages can satisfy first thread’s read

- but both are 'value = 0

- SLIDE — our semantics can’t describe this yet, need to extend them

< Q
i
o i

revisit load buffering example
- want to observe ‘1" when loading "X’
- b/c this is actual behavior of power & arm

- What if we do the read of "X first?

- only message that can satisfy read has value 0
+ won’t work

- What if we do the second thread’s read+write first?

- SLIDE — add new write message to memory & update second thread’s view
- SLIDE — advance pc

+ now two messages can satisfy first thread’s read
- but both are 'value = 0
- SLIDE — our semantics can’t describe this yet, need to extend them

Introducing Promises

a MDN Signin

< Promise

value which may be available now, or in the future, or never.

Syntax

>

The Promise object is used for asynchronous computations. A Promise represents a

new Promise(/* executor */ function(resolve, reject) { ... });

JavaScript developers had the silver bullet all along! Promises!
- SLIDE — just kidding, not those promises

Introducing Promises

[IMDN Signin

< Pro

The Promise object is

value which may be a

Syntax

| new Promise(/* executor”

>

A Promise represents a

unction(resolve, reject) { ... });

JavaScript developers had the silver bullet all along! Promises!
- SLIDE — just kidding, not those promises

e Athread can promise to write a value in the future

thread can promise to write a value in future
+ must guarantee that it will fulfill promise
- potential infinite loop / early exit / conditional / etc between now and promised write is NOT valid
- after every step, re-verify it can still fulfill promised write
- SLIDE — promise equivalent to normal write form other threads’ POV
- adds write message to memory set
- they can observe promised write in reads
- SLIDE — promising thread cannot use its promised write in reads!
+ single threaded program
- we don’t want to promise write 'x := 1°
- and then read that promised write in "a := X'
- don’t need to add special rules for this, existing timestamps are enough
- if promised write was observed
- it would update T.view[x] = timestamp(promise)
-+ which would make fulfilling the write impossible, as write’s timestamp must be > than view
+ however, *can” indirectly observe promised write via other threads’ reads+writes

e Athread can promise to write a value in the future

» Other threads can satisfy reads with that promise

thread can promise to write a value in future
+ must guarantee that it will fulfill promise
- potential infinite loop / early exit / conditional / etc between now and promised write is NOT valid
- after every step, re-verify it can still fulfill promised write
- SLIDE — promise equivalent to normal write form other threads’ POV
- adds write message to memory set
- they can observe promised write in reads
- SLIDE — promising thread cannot use its promised write in reads!
+ single threaded program
- we don’t want to promise write 'x := 1°
- and then read that promised write in "a := X'
- don’t need to add special rules for this, existing timestamps are enough
- if promised write was observed
- it would update T.view[x] = timestamp(promise)
-+ which would make fulfilling the write impossible, as write’s timestamp must be > than view
+ however, *can” indirectly observe promised write via other threads’ reads+writes

e Athread can promise to write a value in the future
» Other threads can satisfy reads with that promise
e Promising thread cannot!

a :=x// 1?7 No!!l
X :=1

thread can promise to write a value in future
+ must guarantee that it will fulfill promise
- potential infinite loop / early exit / conditional / etc between now and promised write is NOT valid
- after every step, re-verify it can still fulfill promised write
- SLIDE — promise equivalent to normal write form other threads’ POV
- adds write message to memory set
- they can observe promised write in reads
- SLIDE — promising thread cannot use its promised write in reads!
+ single threaded program
- we don’t want to promise write 'x := 1°
- and then read that promised write in "a := X'
- don’t need to add special rules for this, existing timestamps are enough
- if promised write was observed
- it would update T.view[x] = timestamp(promise)
-+ which would make fulfilling the write impossible, as write’s timestamp must be > than view
+ however, *can” indirectly observe promised write via other threads’ reads+writes

Again with the pseudocode
+ T = thread making the promise
+ X = memory location

- v =value

- t =timestamp

promise(T, x, v, t):
insert < x : v @ t > into memory
insert <{ x : v@t > into T.prm

promise(T, x, v, t):
insert < x : v @ t > into memory
insert <{ x : v@t > into T.prm

just like a “normal” write, message is put into memory

promise(T, x, v, t):
insert < x : v @ t > into memory
insert <(x : v @t > into T.prm

also added to thread’s local set of unfulfilled promises, T.prm
+ T.prm lets us know what we can or can’t fulfill

- must be empty at the end of thread’s execution

- ifitisn’t that means we didn’t fulfill all promises

fulfill(T, x, v, t):
remove < X : v @t > from T.prm
T.view[x] = t

write kind of already happened — fulfill brings thread up to date with its promised write

- removes promised write from unfulfilled promise set
- updates local view of memory location x

write is no longer “specia
- just a promise + fulfill back-to-back

write(T, x, Vv):
let t = new unique timestamp > T.view[Xx]
promise(T, x, v, t)
fulf1l1(T, x, v, t)

read(T, x):
let min_t = T.view[x]
let max_t = infinity
for each < x' v@t)>in T.prm:
1f x' ==
max_t = minimum(max_t, t)
let possibles = empty set
for each { x' : v @ t > i1n memory:
1f x' == x and min_t <= t and t < max_t:
insert < x' v @ t > into possibles
let < _ :v@t)-=
nondeterministically choose one from possibles
T.view[x] = t
return v

read needs to be revised a bit to play nice with promises
- as before, building up the set of write messages that *could* *possibly*

- but now we have some extra checks

- this pseudocode is *descriptive* only
- the new checks don’t appear in the formal operational semantics

satisfy this read

read(T,
let

let
for

let
for

let

x):

min_t = T.view[Xx]

max_t = infinity
each { x' : v@+t > in T.prm:
1f x' == Xx:

max_t = minimum(max_t, t)

possibles = empty set

each ¢ x' : v @ t > in memory:

1f x' == x and min_t <= t and t < max_t:
insert < x' : v @ t > into possibles

(_:vet)s=
nondeterministically choose one from possibles

T.view[x] = t
return v

minimum timestamp a write message can have to satisfy our read

- this is all we had before

read(T,
let

x):

let
for each < x'
1f x'

max_t

let
for

possibles
each < x'
1f x'

let < _ v @ t

T.view[x] = t
return v

min_t = T.view[Xx]

max_t = infinity

v@t)>in T.prm:
minimum(max_t, t)

empty set
v @t) 1in memory:

x and min_t <= t and t < max_t:
insert < x'

v @ t > into possibles

>=

nondeterministically choose one from possibles

unlike before, now defining upper bound on messages’ timestamps

- timestamp of message that satisfies read must be less than minimum promised timestamp
- otherwise promise would be unfulfillable — like single threaded example earlier

- implicitly disallowed in operational semantics
- failure to obey would make promises unfulfillable

read(T, x):
let min_t = T.view[x]
let max_t = infinity
for each < x' v@t)>in T.prm:
1f x' ==
max_t = minimum(max_t, t)
let possibles = empty set
for each ¢ x' : v @ t > in memory:
1f x' == x and min_t <= t and t < max_t:
insert < x'" : v @ t > into possibles
let < _ :v@t)-=
nondeterministically choose one from possibles
T.view[x] = t
return v

have min and max bounds, so get every write message that falls within them

- this is set of write messages that could possibly fulfill this read

read(T, x):
let

let
for each < x'
1f x'

max_t

let
for

possibles
each < x'
1f x' ==

let < _

T.view[x] = t
return v

min_t = T.view[Xx]

max_t = infinity

v@t)>in T.prm:
minimum(max_t, t)

empty set
v @t) 1in memory:

x and min_t <= t and t < max_t:
insert < x'

v @ t > into possibles

vet)s=
nondeterministically choose one from possibles

from here, proceeds as we originally did
- nondeterministically choose one message from our possibilities
- update thread’s local view of memory location x

+ return the value

—xample (LB)

Memory To.view | T1.view To.prm | T1.prm

(x:0@0>
Cy:0@0>

X @0 X @0
y@o0 y@o0

revisit load buffering example
- remember: want to permit observing ‘1" when loading memory location 'x' into register ‘a’
- SLIDE — first thread promises to write 'y := 1" at timestamp 1
- this also adds the promised write to memory
+ but does NOT advance pc!
- SLIDE — second thread reads y
- possibilities includey @0 andy @ 1
+ choose the latter in this execution
- its view of y is updated
- SLIDE — writes the newly read value back to x with timestamp 1
- technically this involves promise-+fulfill
- and second thread’s view of x is also updated
- SLIDE — and it’s pc advances and second thread is finished

- SLIDE — first thread reads x

- two possibilities: @0 and @1
- we choose @1 to observe x=1
- update local view of "X’

- SLIDE

- not done yet — still have to fulfill promised write
- local view of 'y is @ 0

~

Q

y :=

—xample (LB)

I I
= X

Memory To.view

B X i=

T1.view To.prm

T1.prm

(x:0@0>
Cy:0@0>
y:1@1>

X @O0
y@o0

y@o0

~

revisit load buffering example

- remember: want to permit observing 1" when loading memory location "x'

- SLIDE — first thread promises to write 'y := 1" at timestamp 1
- this also adds the promised write to memory

+ but does NOT advance pc!

- SLIDE — second thread reads y

- possibilities includey @0 andy @ 1

+ choose the latter in this execution

- its view of y is updated

- SLIDE — writes the newly read value back to x with timestamp 1
- technically this involves promise-+fulfill

- and second thread’s view of x is also updated

- SLIDE — and it’s pc advances and second thread is finished

- SLIDE — first thread reads x

- two possibilities: @0 and @1
- we choose @1 to observe x=1
- update local view of "X’

- SLIDE

- not done yet — still have to fulfill promised write
- local view of 'y is @ 0

into register ‘a

~

Q

y :=

—xample (LB)

I I
= X

Memory To.view

B X i=

T1.prm

(x:0@0>
Cy:0@0>
y:1@1>

X @O0
y@o0

~

revisit load buffering example

- remember: want to permit observing 1" when loading memory location "x'

- SLIDE — first thread promises to write 'y := 1" at timestamp 1
- this also adds the promised write to memory

+ but does NOT advance pc!

- SLIDE — second thread reads y

- possibilities includey @0 andy @ 1

+ choose the latter in this execution

- its view of y is updated

- SLIDE — writes the newly read value back to x with timestamp 1
- technically this involves promise-+fulfill

- and second thread’s view of x is also updated

- SLIDE — and it’s pc advances and second thread is finished

- SLIDE — first thread reads x

- two possibilities: @0 and @1
- we choose @1 to observe x=1
- update local view of "X’

- SLIDE

- not done yet — still have to fulfill promised write
- local view of 'y is @ 0

into register ‘a

Memory To.view

—xample (LB)

B X i=

T1.prm

X @O0
y@o0

NN N N\
X< < X
— a1 OO0
QOO
—A a1 OO0
AV VAV Y

~

revisit load buffering example
- remember: want to permit observing 1" when loading memory location "x'
- SLIDE — first thread promises to write 'y := 1" at timestamp 1
- this also adds the promised write to memory
+ but does NOT advance pc!
- SLIDE — second thread reads y
- possibilities includey @0 andy @ 1
+ choose the latter in this execution
- its view of y is updated
- SLIDE — writes the newly read value back to x with timestamp 1
- technically this involves promise-+fulfill
- and second thread’s view of x is also updated
- SLIDE — and it’s pc advances and second thread is finished

- SLIDE — first thread reads x

- two possibilities: @0 and @1
- we choose @1 to observe x=1
- update local view of "X’

- SLIDE

- not done yet — still have to fulfill promised write
- local view of 'y is @ 0

into register ‘a

Memory To.view

—xample (LB)

T1.prm

X @O0
y@o0

NN N N\
X< < X
— a1 OO0
QOO
—A a1 OO0
AV VAV Y

~

revisit load buffering example
- remember: want to permit observing 1" when loading memory location "x'
- SLIDE — first thread promises to write 'y := 1" at timestamp 1
- this also adds the promised write to memory
+ but does NOT advance pc!
- SLIDE — second thread reads y
- possibilities includey @0 andy @ 1
+ choose the latter in this execution
- its view of y is updated
- SLIDE — writes the newly read value back to x with timestamp 1
- technically this involves promise-+fulfill
- and second thread’s view of x is also updated
- SLIDE — and it’s pc advances and second thread is finished

- SLIDE — first thread reads x

- two possibilities: @0 and @1
- we choose @1 to observe x=1
- update local view of "X’

- SLIDE

- not done yet — still have to fulfill promised write
- local view of 'y is @ 0

into register ‘a

—xample (LB)

Memory To.view | T1.view To.prm | T1.prm

>
®
=
>
®
X
<
®

NN N N\
X< < X
— a1 OO0
QOO
—A a1 OO0
AV VAV Y

revisit load buffering example
- remember: want to permit observing ‘1" when loading memory location 'x' into register ‘a’
- SLIDE — first thread promises to write 'y := 1" at timestamp 1
- this also adds the promised write to memory
+ but does NOT advance pc!
- SLIDE — second thread reads y
- possibilities includey @0 andy @ 1
+ choose the latter in this execution
- its view of y is updated
- SLIDE — writes the newly read value back to x with timestamp 1
- technically this involves promise-+fulfill
- and second thread’s view of x is also updated
- SLIDE — and it’s pc advances and second thread is finished

- SLIDE — first thread reads x

- two possibilities: @0 and @1
- we choose @1 to observe x=1
- update local view of "X’

- SLIDE

- not done yet — still have to fulfill promised write
- local view of 'y is @ 0

—xample (LB)

— Y i=

l

Memory To.view | T1.view To.prm | T1.prm

>
®
=
>
®
X
<
®

NN N N\
X< < X
— a1 OO0
QOO
—A a1 OO0
AV VAV Y

revisit load buffering example
- remember: want to permit observing ‘1" when loading memory location 'x' into register ‘a’
- SLIDE — first thread promises to write 'y := 1" at timestamp 1
- this also adds the promised write to memory
+ but does NOT advance pc!
- SLIDE — second thread reads y
- possibilities includey @0 andy @ 1
+ choose the latter in this execution
- its view of y is updated
- SLIDE — writes the newly read value back to x with timestamp 1
- technically this involves promise-+fulfill
- and second thread’s view of x is also updated
- SLIDE — and it’s pc advances and second thread is finished

- SLIDE — first thread reads x

- two possibilities: @0 and @1
- we choose @1 to observe x=1
- update local view of "X’

- SLIDE

- not done yet — still have to fulfill promised write
- local view of 'y is @ 0

>y =

—xample (LB)

i
= X

Memory To.view

T1.prm

NN N N\
X< < X
— a1 OO0
QOO
—A a1 OO0
AV VAV Y

>
®
%é

revisit load buffering example

- remember: want to permit observing ‘1" when loading memory location 'x' into register ‘a’

- SLIDE — first thread promises to write 'y := 1" at timestamp 1
- this also adds the promised write to memory

+ but does NOT advance pc!

- SLIDE — second thread reads y

- possibilities includey@0andy @ 1

+ choose the latter in this execution

- its view of y is updated

- SLIDE — writes the newly read value back to x with timestamp 1
- technically this involves promise-+fulfill

- and second thread’s view of x is also updated

- SLIDE — and it’s pc advances and second thread is finished

- SLIDE — first thread reads x

- two possibilities: @0 and @1
- we choose @1 to observe x=1
- update local view of "X’

- SLIDE

- not done yet — still have to fulfill promised write
- local view of 'y is @ 0

Q

—xample (LB)

i
= X

Memory To.view

T1.prm

NN N N\
X< < X
— a1 OO0
QOO
—A a1 OO0
AV VAV Y

>
®
%é

revisit load buffering example

- remember: want to permit observing ‘1" when loading memory location 'x' into register ‘a’

- SLIDE — first thread promises to write 'y := 1" at timestamp 1
- this also adds the promised write to memory

+ but does NOT advance pc!

- SLIDE — second thread reads y

- possibilities includey@0andy @ 1

+ choose the latter in this execution

- its view of y is updated

- SLIDE — writes the newly read value back to x with timestamp 1
- technically this involves promise-+fulfill

- and second thread’s view of x is also updated

- SLIDE — and it’s pc advances and second thread is finished

- SLIDE — first thread reads x

- two possibilities: @0 and @1
- we choose @1 to observe x=1
- update local view of "X’

- SLIDE

- not done yet — still have to fulfill promised write
- local view of 'y is @ 0

Why are time stamps dense?

X =1 X =3

“dense” = infinite timestamps between t, and t, where t; =1,
* SLIDE — first thread promises{x:2 @ 2 >
* before it can fulfill that promise, it must write{x:1 @1 >
* SLIDE — but what if second thread writes < x : 3 @ 1 > before first thread writes<{x:1 @ 1)?
= now first thread can’t write { x : 1 @ 1) because timestamp 1 is already taken

* but also can’t use timestamp 2 because it needs to fulfill its promise at timestamp 2
* SLIDE — choose some timestamp twhere 1 <t<2 — eg 1.5
* there ALWAYS exists such a 't because of dense property

Why are time stamps dense?

X =1 X =3
X 1= 2

e Topromises<{x:2@ 2>

“dense” = infinite timestamps between t, and t, where t; =1,
* SLIDE — first thread promises{x:2 @ 2 >
* before it can fulfill that promise, it must write{x:1 @1 >
* SLIDE — but what if second thread writes < x : 3 @ 1 > before first thread writes<{x:1 @ 1)?
= now first thread can’t write { x : 1 @ 1) because timestamp 1 is already taken

* but also can’t use timestamp 2 because it needs to fulfill its promise at timestamp 2
* SLIDE — choose some timestamp twhere 1 <t<2 — eg 1.5
* there ALWAYS exists such a 't because of dense property

Why are time stamps dense?

X =1 X =3
X 1= 2

e Topromises<{x:2@ 2>

e Tiwrites<{x:3@ 1>

“dense” = infinite timestamps between t, and t, where t; =1,
* SLIDE — first thread promises{x:2 @ 2 >
* before it can fulfill that promise, it must write{x:1 @1 >
* SLIDE — but what if second thread writes < x : 3 @ 1 > before first thread writes<{x:1 @ 1)?
= now first thread can’t write { x : 1 @ 1) because timestamp 1 is already taken

* but also can’t use timestamp 2 because it needs to fulfill its promise at timestamp 2
* SLIDE — choose some timestamp twhere 1 <t<2 — eg 1.5
* there ALWAYS exists such a 't because of dense property

Why are time stamps dense?

X =1 X =3
X 1= 2

e Topromises<{x:2@ 2>
e Tywrites<{x:3@1>

e Towrites{x:1@t)>wherel1<t<?

“dense” = infinite timestamps between t, and t, where t; =1,
* SLIDE — first thread promises{x:2 @ 2 >
* before it can fulfill that promise, it must write{x:1 @1 >
* SLIDE — but what if second thread writes < x : 3 @ 1 > before first thread writes<{x:1 @ 1)?
= now first thread can’t write { x : 1 @ 1) because timestamp 1 is already taken
* but also can’t use timestamp 2 because it needs to fulfill its promise at timestamp 2
* SLIDE — choose some timestamp twhere 1 <t<2 — eg 1.5
* there ALWAYS exists such a 't because of dense property

*

Wait — There's Morel

Atomics and fences

Mechanized proofs

DRF guarantees

Compilation to TSO
and Power

more good stuff in paper, we don’t have time
extend the model with semantics for release/acquire and SC atomics and fences
machine checked proofs of correctness implemented in Coq
* this is an area where we *know* we need formal proofs and we need them checked correct
details on how data-race free programs (using correct locks/atomics/synchronization) are unaffected
talk about how they’ve compiled these semantics into x86 TSO and Power
* they left ARM for future work, and intend to do that soon

s Promising Perfect”

* No thread inlining

e [Limited code motion

disclaimer: I’'m not really qualified to critique this model and discuss its limitations
* thread inlining is where one thread executes all of another thread’s work
* this can make promises unfulfillable
* maybe has implications for work stealing? honestly not sure
* the per-location SC makes optimizations like LICM difficult (maybe impossible?)
* SLIDE

s Promising Perfect”

* No thread inlining
* Limited code motion

* ... No, but it sure is promising!

disclaimer: I’'m not really qualified to critique this model and discuss its limitations
* thread inlining is where one thread executes all of another thread’s work
* this can make promises unfulfillable
* maybe has implications for work stealing? honestly not sure
* the per-location SC makes optimizations like LICM difficult (maybe impossible?)
* SLIDE

@pwo”
THANK You!!

@fitzgen

